Problem on approximating a function of two variables
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Let $u(x,y) = x y $. Estimate the value of $u(0.8, 2.1)$ using a first-order approximation of $u$ at $(1,2)$.
Solution
We recall the first order approximation of a function of two variables:
First-order approximation of functions of several variables
For small $\Delta x$ and $\Delta y$, $$u(x+\Delta x,y + \Delta y) \approx u(x, y) + \partial_x u(x, y) \Delta x + \partial_y u(x, y) \Delta y $$
To use this formula, we need to find $\Delta x$, $\Delta y$, $u(1,2)$, $\partial_x u(1,2)$, $\partial_y u(1,2)$.
From the problem statement, we observe $u(1,2) = 2$, $\Delta x = -0.2$, and $\Delta y = 0.1$.
Partial derivatives
Computing the partial derivatives, $$\partial_x u(x,y) = y \ \Longrightarrow \ \partial_x u(1,2) = 2 \\\partial_y u(x,y) = x \ \Longrightarrow \ \partial_y u(1,2) = 1.$$
Plugging in, $$w(0.8, 2.1) \approx 2 + 2 \cdot (-0.2) + 1 \cdot (0.1) = 1.7$$
Related topics
Multivariable calculus
(147 problems)
Functions of several variables
(36 problems)
Partial derivative: $\frac{\partial f}{\partial x} = \partial_x f = f_x$.
(15 problems)
First order approximation:$$f(x+\Delta x,y + \Delta y) \approx f(x, y) + \partial_x f(x, y) \Delta x + \partial_y f(x, y) \Delta y $$
(2 problems)