Problem on computing a directional derivative
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Compute the directional derivative of $f(x,y) = x^2 + y^2$ at $(1,1)$ in the direction of $2 \mathbf{j}$.
Solution
Recall that:
Directional derivative and gradient
The directional derivative of $f(x,y)$ in the direction of $\mathbf{v}$ is:
$$D_\mathbf{v} f = \nabla f(x,y) \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$$
To compute the directional derivative, we first compute $\nabla f(1,1)$ and $\mathbf{v}/|\mathbf{v}|$.
Recall that
Definition of the gradient
The definition of the gradient of $f$ is $$\nabla f(x,y) = \partial_x f(x,y) \mathbf{i} + \partial_y f(x,y) \mathbf{j}$$
We now compute the gradient of $f$ at $(1,1)$:
\begin{align}
\nabla f(x,y) &= 2 x \ \mathbf{i} + 2 y \ \mathbf{j}\\
\nabla f(1,1) &= 2 \ \mathbf{i} + 2 \ \mathbf{j}\\
\end{align}
To compute $\mathbf{v}/|\mathbf{v}|$, we identify $\mathbf{v} = 2 \mathbf{j}$, which has length $| \mathbf{v} | = 2$. Hence, $$\frac{\mathbf{v}}{|\mathbf{v}|} = \mathbf{j}$$
Putting these computations together, we get
\begin{align}D_\mathbf{v} f &= (2 \mathbf{i} + 2 \mathbf{j}) \cdot \mathbf{j} = 2
\end{align}
The directional derivative is $2$.
Related topics
Multivariable calculus
(147 problems)
Functions of several variables
(36 problems)
Gradient
(18 problems)
$\nabla f(x,y) = \partial_x f(x,y) \mathbf{i} + \partial_y f(x,y) \mathbf{j}$
(15 problems)
Directional derivative
(10 problems)
The directional derivative of $f(x,y)$ in the direction of the vector $\mathbf{v}$ can be computed by
$$D_\bfv f = \nabla f(x,y) \cdot \frac{\mathbf{v}}{|\mathbf{v}|}$$
(6 problems)