Problem on deriving the chain rule for functions of several variables

$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Consider the composition of functions $f(x(a,b),y(a,b))$.
  1. Keeping $b$ fixed, and varying $a$ by $\Delta a$, what is the approximate change in $x(a,b)$?
  2. What is the approximate change in $y(a,b)$?
  3. Keeping $y$ fixed, and varying $x$ by $\Delta x$, how much does $f(x,y)$ change?
  4. Keeping $x$ fixed, and varying $y$ by $\Delta y$, how much does $f(x,y)$ change?
  5. Combine your answers above to compute the partial derivative $\partial_a f(x(a,b), y(a,b))$. This should be the chain rule.