Directly compute $\int_C \mathbf{F} \cdot d\mathbf{r}$ where $\mathbf{F}(x,y) = x y \ \mathbf{i} + \mathbf{j}$ and $C$ is the curve connecting $(0,0)$ to $(1,1)$ along $y=x^2$.
Expressing $d\mathbf{r}$ in terms of $t$, we differentiate (1): $$d\mathbf{r}(t) = (\mathbf{i} + 2 t \ \mathbf{j}) \ dt.$$
Expressing $\mathbf{F} \cdot d\mathbf{r}$ in terms of $t$:$$\mathbf{F} \cdot d\mathbf{r} = (t^3 + 2 t) dt.$$
Noting that the bounds of the parameter $t$ are $0$ and $1$, we can rewrite the integral as:$$ \int_C \mathbf{F}\cdot d\mathbf{r} = \int_0^1( t^3 + 2t) dt.$$
Step 3 - Evaluate the 1d integral
Evaluating the integral in $t$, we see that \begin{align} \int_C \mathbf{F}\cdot \mathbf{r}& = \int_0^1 (t^3 + 2t )dt \\ &= \frac{1}{4} t^4 + t^2 \Bigg |_0^1\\ &= \frac{5}{4}. \end{align}
We conclude that $$\int_C \mathbf{F} \cdot d\mathbf{r}= \frac{5}{4}.$$