Find the second degree polynomial going through $(-1, 1), (1, 3),$ and $(2,2)$.
Hint: To find the coefficients of $y = a + bx + cx^2$, set up a $3 \times 3$ matrix satisfied by $a,b,c$.
Solution
We are trying to find the function $y(x) = a + bx + cx^2$ such that $y(-1) = 1$, $y(1) = 3$, and $y(2) = 2$.
Let's plug the three values $x$ into $y$ and see what that says about $a$, $b$, and $c$.
Plugging the $x$ values into the function we get \begin{alignat}{3} y(-1) \ &= a + b (-1) \ &&+ \ c (-1)^2 \ &&= 1\\ y(1)\ &= a + b ( 1) &&+ \ c(1)^2 &&= 3\\ y(2)\ &= a + b ( 2) &&+ \ c(2)^2 &&= 2 \end{alignat}
Simplifying, we get \begin{alignat}{6} &a \ & &- & & b\ & &+ & & c &=1\\ &a & &+ & & b & &+ & & c &=3\\ &a & &+ & \ 2&b & &+ &\ 4& c \ &=2 \end{alignat}