Problem on finding a unit vector
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Find a unit vector in the direction of $\langle 1, 1 \rangle$.
Solution
Recall that
Finding the unit vector in the same direction as another vector
The find the unit vector in the same direction as $\bfx$, divide by the length of $\bfx$.
Let $\bfx = \langle 1, 1\rangle$. Recall that
Definition of vector length
The length of $\langle x_1, x_2\rangle$ is $\sqrt{x_1^2 + x_2^2}$.
We thus compute that $$\left | \langle 1, 1 \rangle \right | = \sqrt{1^2 + 1^2} = \sqrt{2}.$$
Component view of vector-scalar multiplication
Hence the unit vector in the direction of $\langle 1, 1 \rangle$ is $$\frac{\langle 1, 1 \rangle}{\sqrt{2}} = \left \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right \rangle.$$
Related topics
Multivariable calculus
(147 problems)
Vectors
(55 problems)
Length of a vector
(32 problems)
The length of the vector $\mathbf{x} = \langle x_1, x_2, x_3 \rangle$ is $
|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.
(16 problems)
The find the unit vector in the same direction as $\bfx$, divide $\bfx$ by its length.
(3 problems)
Direction of a vector
(9 problems)
Vector scalar multiplication
(13 problems)
$c \langle x_1, x_2, x_3 \rangle = \langle c x_1, c x_2, c x_3 \rangle.$
(2 problems)