Problem on finding a vector with given length and direction
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Find the vector of length 2 in the direction of $\langle 1,-1 \rangle$.
Solution
Let $\mathbf{x}$ be the vector we seek. We recall the relationship of a vector to its length and direction:
Definition of the direction of a vector
$$\text{dir } \mathbf{x} = \frac{\mathbf{x}} {| \mathbf{x} | }$$
Building a vector from its length and direction
Because we art trying to find $\bfx$ from information on its length and direction, we rewrite this formula as, $$ \mathbf{x} = |\mathbf{x} |\ \text{dir } \mathbf{x}.$$
We are given that $| \mathbf{x} |= 2$. We need to compute $\text{dir } \mathbf{x}$ from the information that $\mathbf{x}$ is in the same direction as $\langle 1,-1 \rangle$:
Definition of the direction of a vector
$$\text{dir } \mathbf{x} = \text{dir } \langle 1,-1 \rangle = \frac{\langle 1, -1\rangle} { | \langle 1, -1 \rangle | }. $$
We need to compute the length $|\langle 1, -1 \rangle |$. To do this, recall that
Definition of vector length
The length of the vector $\bfy = \langle y_1, y_2\rangle$ is $
|\mathbf{y}| = \sqrt{y_1^2 + y_2^2}$.
Hence, $ | \langle 1, -1 \rangle | = \sqrt{2}$, and
$$\text{dir } \mathbf{x} = \left \langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right \rangle.$$
Thus
\begin{align}
\mathbf{x} &= 2 \cdot \left \langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right \rangle\\
&= \langle \sqrt{2}, -\sqrt{2} \rangle.
\end{align}
Related topics
Multivariable calculus
(147 problems)
Vectors
(55 problems)
Length of a vector
(32 problems)
The length of the vector $\mathbf{x} = \langle x_1, x_2, x_3 \rangle$ is $
|\mathbf{x}| = \sqrt{x_1^2 + x_2^2 + x_3^2}$.
(16 problems)
Direction of a vector
(9 problems)
The direction of a vector $\mathbf{x}$ is defined by $\text{dir } \mathbf{x} = \frac{\mathbf{x}}{| \mathbf{x} | }.$
(4 problems)
To construct $\bfx$ from its length and direction, write: $\bfx = \left| \bfx \right| \text{ dir } \bfx.$
(4 problems)
Vector scalar multiplication
(13 problems)