Problem on matrices as transformations
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Let $A= \begin{pmatrix}1/2 & 0 \\ 0 & 2 \end{pmatrix}$.
How does the following shape get transformed by application of $A$:
Solution
Recall that
Matrices as transformations
To graphically explore the application of a matrix, see how it acts on the standard vectors $(1,0)$ and $(0,1)$. Then piece together the effect on the overall shape by considering the $x$ and $y$ behaviors separately.
Matrix multiplication
We begin by seeing how $A$ transforms the vector $(1,0)$ by performing the matrix multiplication: $$ \begin{pmatrix}1/2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1\\0 \end{pmatrix} = \begin{pmatrix}1/2 \\ 0 \end{pmatrix}$$
We see $(1,0)$ gets shunk by half to $(1/2, 0)$.
Matrix multiplication
Similarly, $A$ transforms the vector $(0,1)$ into $$ \begin{pmatrix}1/2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0\\1 \end{pmatrix} = \begin{pmatrix}0 \\ 2 \end{pmatrix}$$
We see $(0,1)$ gets scaled by two to $(0,2)$.
Graphically:
We see that the $x$ component gets cut in half, while the $y$ component is doubled. Hence the shape is transformed to:
Related topics
Multivariable calculus
(147 problems)
Matrices and linear equations
(20 problems)
Matrix multiplication
(13 problems)
Matrices as transformations
(3 problems)