Problem on normal vectors to surfaces
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Use 3d level surfaces to show that a normal vector to $z=f(x,y)$ is given by $\langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1 \rangle$.
Solution
First, we recall how to use level surfaces to find a normal vector.
Normal vector to an implicitly defined surface
Gradient is perpendicular to level curves
Level curves and surfaces
To find a normal vector to a surface, view that surface as a level set of some function $g(x,y,z)$.
$\nabla g(x,y,z)$ is perpendicular to the level surfaces of $g(x,y,z)$.
To find a normal vector, we identify the function $g(x,y,z)$, and compute its gradient.
Level curves and surfaces
We identify that $z=f(x,y)$ is the 0-level surface of $$g(x,y,z) = f(x,y)-z.$$
Definition of the gradient
We now compute that the gradient is $$\nabla g(x,y,z) = \left \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1\right \rangle.$$
Normal vector to an explicitly defined surface
Hence, a normal vector to $z=f(x,y)$ is $\left \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1 \right \rangle$.
Related topics
Multivariable calculus
(147 problems)
Functions of several variables
(36 problems)
The level curves of $f(x,y)$ are curves in the $xy$-plane along which $f$ has a constant value.
(13 problems)
Gradient
(18 problems)
$\nabla f(x,y) = \partial_x f(x,y) \mathbf{i} + \partial_y f(x,y) \mathbf{j}$
(15 problems)
The gradient $\nabla f(x,y)$ is perpendicular to the level curve of $f$ that contains $(x,y)$.
(7 problems)
Surfaces in 3d
(10 problems)
Normal vectors to surfaces
(5 problems)
A normal vector to the surface $g(x,y,z)=0$ at $(x,y,z)$ is given by $\nabla g(x,y,z)$.
(5 problems)
A normal vector to the explicitly defined surface $z = f(x,y)$ is $$\left \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1 \right \rangle$$
(1 problem)