Problem on scalar multiplication and vector direction
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Let $c$ be a nonzero scalar. Does $c \ \mathbf{x}$ have the same direction as $\mathbf{x}$?
Solution
Direction of a vector
We are seeking to determine if $\text{dir }( c \ \mathbf{x})$ and the direction $\text{dir } \mathbf{x}$.
We will write the expression of $\text{dir } c \ \mathbf{x}$ and manipulate it to involve $\text{dir } \mathbf{x}$ explicitly.
Recall that:
Definition of the direction of a vector
The direction of $\mathbf{x}$ is defined by
$$\text{dir } \mathbf{x} = \frac{\mathbf{x}}{| \mathbf{x} | }.$$
We are thus seeking the relationship of $\frac{\mathbf{x}}{|\mathbf{x}|}$ and $\frac{c \mathbf{x}}{|c \mathbf{x}|}$. Are they equal?
In order to make the two terms more alike, we try to factor out $c$ from the denominator of $\text{dir } (c \ \mathbf{x})$. Recall that:
Length of a scalar vector multiplication
For any scalar $c$ and vector $\mathbf{x}$, $|c \mathbf{x} | = |c| |\mathbf{x} |$.
Thus, $\text{dir } (c \mathbf{x}) = \frac{c}{|c|} \frac{\mathbf{x}}{|\mathbf{x}|} = \frac{c}{|c|} \text{dir } \mathbf{x}$.
Whether or not $\mathbf{x}$ and $c \ \mathbf{x}$ have the same direction is determined by whether or not $\frac{c}{|c|}=1 $.
If $c> 0$: $\frac{c}{|c|} = 1$ and $\text{dir } (c \mathbf{x}) = \text{dir } \mathbf{x}$.
If $c< 0$: $\frac{c}{|c|} = 1$ and $\text{dir } (c \mathbf{x}) = - \text{dir } \mathbf{x}$.
If $c=0$: $\text{dir } (c \mathbf{x})$ is undefined.
Related topics
Multivariable calculus
(147 problems)
Vectors
(55 problems)
Length of a vector
(32 problems)
For any scalar $c$ and vector $\mathbf{x}$, $|c \mathbf{x} | = |c|\ |\mathbf{x} |$.
(4 problems)
Direction of a vector
(9 problems)
The direction of a vector $\mathbf{x}$ is defined by $\text{dir } \mathbf{x} = \frac{\mathbf{x}}{| \mathbf{x} | }.$
(4 problems)
Vector scalar multiplication
(13 problems)