Problem on vector direction and addition
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
If $\text{dir } \mathbf{x} = \text{dir } \mathbf{y}$ show that $|\mathbf{x} + \mathbf{y}| = |\mathbf{x}| + | \mathbf{y} |$.
Solution
We are asked to study the length of the sum of two vectors given information of their directions.
We recall the relationship of vectors to their direction and length:
Building a vector from its length and direction
\begin{align}
\mathbf{x} &= |\mathbf{x} | \text{ dir } \mathbf{x} \\
\mathbf{y} &= | \mathbf{y} | \text{ dir } \mathbf{y}
\end{align}
Because we wish to analyze the length of $\mathbf{x} + \mathbf{y}$, we write out $$\mathbf{x} + \mathbf{y} = |\mathbf{x} | \text{ dir } \mathbf{x} + |\mathbf{y} | \text{ dir } \mathbf{y}.$$
Because $\text{dir } \mathbf{x} = \text{dir } \mathbf{y}$, $$ \mathbf{x} + \mathbf{y} = \text{dir } \mathbf{x} \ \left( |\mathbf{x}| + |\mathbf{y}| \right)$$
Taking the length of both sides
\begin{align}
|\mathbf{x} + \mathbf{y}| &= | \text{dir } \mathbf{x} \ \left( |\mathbf{x}| + |\mathbf{y}| \right)|
\end{align}
Recalling that
Length of a scalar vector multiplication
For any scalar $c$ and vector $\mathbf{v}$, $|c \mathbf{v} | = |c|\ |\mathbf{v} |$, where $|c|$ is the absolute value of $c$.
we let $\mathbf{v} = \text{dir } \mathbf{x}$ and $c = |\mathbf{x} | + | \mathbf{y}|$ to get
$$|\mathbf{x} + \mathbf{y}| = | \text{dir } \mathbf{x}| \cdot \Bigl |\left( |\mathbf{x}| + |\mathbf{y}| \right) \Bigr|.$$
We recall that
Direction of a vector
The direction of a vector is itself a unit vector. That is, $|\text{dir } \mathbf{x} | = 1$.
Thus,
\begin{align}
|\mathbf{x} + \mathbf{y}| &= \Bigl |\left( |\mathbf{x}| + |\mathbf{y}| \right) \Bigr| \\
&= |\mathbf{x}| + |\mathbf{y}|.
\end{align}
The outer absolute value sign can be removed because $|\mathbf{x}| + |\mathbf{y}| $ is always nonnegative.
Related topics
Multivariable calculus
(147 problems)
Vectors
(55 problems)
Length of a vector
(32 problems)
For any scalar $c$ and vector $\mathbf{x}$, $|c \mathbf{x} | = |c|\ |\mathbf{x} |$.
(4 problems)
Direction of a vector
(9 problems)
To construct $\bfx$ from its length and direction, write: $\bfx = \left| \bfx \right| \text{ dir } \bfx.$
(4 problems)
Vector addition
(10 problems)
Vector scalar multiplication
(13 problems)