Problem on whether two vectors can have the same cross product

$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
If $\bfi \times \bfx = \bfi \times \bfy$, does $\bfx = \bfy$? If so, prove it. If not, find a counterexample.
  • Solution

    We are trying to determine whether two vectors can have the same cross product with $\bfi$.
    For problems where we need decide if a statement is true, we should start by exploring the problem in simple cases.
    We let $\bfy$ be the simplest of all vectors: $\bfy = \mathbf{0}$.
    Because $\bfi \times \mathbf{0} = \mathbf{0}$, the problem becomes:
    If $\bfi \times \bfx=\mathbf{0}$, does $\bfx = \mathbf{0}$?
    Recall that
    Hence, if $\bfx$ is a multiple of $\bfi$ then $\bfi \times \bfx = \mathbf{0}.$
    We have thus found a counterexample: $\bfx = \bfi$ and $\bfy = \mathbf{0}$.
    The statement is not true because $\bfi \times \bfi = \bfi \times \mathbf{0}$ and $\bfi \neq \mathbf{0}$.