Study guide and 2 practice problems on:

Second derivative test for functions of several variables

$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Consider a critical point of the differentiable function $f(x,y)$.
Let $D = \text{det} \begin{pmatrix} f_{x x} & f_{x y}\\ f_{y x} & f_{y y} \end{pmatrix} = f_{x x} \cdot f_{y y} - f_{x y}^2 $.
If $D > 0$ and $f_{x x} > 0$ at a critical point, then it is a minimum.
If $D >0$ and $f_{x x} < 0$ at a critical point, then it is a maximum.
If $D < 0$, at a critical point, it is a saddle point.