Study guide and
2 practice problems
on:
Tangent planes to surfaces
$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
To find the tangent plane to a surface at $\bfx_0 = (x_0, y_0, z_0)$, compute a normal vector $\bfn$. The tangent plane is given by $$ \bfn \cdot \bfx = \bfn \cdot \bfx_0.$$
Normal vector to an implicitly defined surface
To find a normal vector to an implicitly defined surface, view that surface as a level set of some function $g(x,y,z)$.
A normal vector at $(x,y,z)$ is given by $\nabla g(x,y,z)$.
Normal vector to an explicitly defined surface
A normal vector to the explicitly defined surface $z = f(x,y)$ is $$\left \langle \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, -1 \right \rangle$$
Related topics
Surfaces in 3d
(10 problems)
Multivariable calculus
(147 problems)
Functions of several variables
(36 problems)
Practice problems
Find the tangent plane at $(1,1,1)$ to the surface $$x^2 + y^2 + z^2 + xy + xz = 5.$$
Solution
Give the equation for the tangent plane to the surface $z x^2 + x y^2 + y z^2 = 5$ at the point $(-1,1,2)$.
Solution