Study guide and 3 practice problems on:

Using directional derivatives to find a tangent vector to a surface

$\newcommand{\bfA}{\mathbf{A}}$ $\newcommand{\bfB}{\mathbf{B}}$ $\newcommand{\bfC}{\mathbf{C}}$ $\newcommand{\bfF}{\mathbf{F}}$ $\newcommand{\bfI}{\mathbf{I}}$ $\newcommand{\bfa}{\mathbf{a}}$ $\newcommand{\bfb}{\mathbf{b}}$ $\newcommand{\bfc}{\mathbf{c}}$ $\newcommand{\bfd}{\mathbf{d}}$ $\newcommand{\bfe}{\mathbf{e}}$ $\newcommand{\bfi}{\mathbf{i}}$ $\newcommand{\bfj}{\mathbf{j}}$ $\newcommand{\bfk}{\mathbf{k}}$ $\newcommand{\bfn}{\mathbf{n}}$ $\newcommand{\bfr}{\mathbf{r}}$ $\newcommand{\bfu}{\mathbf{u}}$ $\newcommand{\bfv}{\mathbf{v}}$ $\newcommand{\bfw}{\mathbf{w}}$ $\newcommand{\bfx}{\mathbf{x}}$ $\newcommand{\bfy}{\mathbf{y}}$ $\newcommand{\bfz}{\mathbf{z}}$
Directional derivatives are one way to find a tangent vector to a surface.
A tangent vector to a surface has a slope (rise in $z$ over run in $xy$) equal to the directional derivative of the surface height $z(x,y).$
If $\mathbf{v} = a \mathbf{i} + b \mathbf{j} + c \mathbf{k}$ is tangent to the surface $z(x,y)$ at $(x,y)$, then $$ \frac{c}{ | a \mathbf{i} + b \mathbf{j} | } = \frac{dz}{ds} \Bigg|_{a \mathbf{i} + b\mathbf{j}}$$
To find a tangent vector, choose $a,b,c$ so that this equality holds.